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PREDICTION OF  LIFT AND  DRAG FOR SLENDER SHARP-EDGE 

DELTA WINGS IN GROUND PROXIMITY 

By Charles H. Fox, Jr. 
Langley  Research  Center 

SUMMARY 

A  method of predicting  the  lift and drag of slender  planar  sharp-edge  delta  wings  in 
ground  proximity is described,  and  the  results are compared  with  experimental  data.  The 
method  utilizes a vortex-lattice  computer  program  incorporating  an  image  technique  to 
compute  the  potential-flow  normal-force  and  axial-force  characteristics of delta  wings  in 
ground  proximity. A recently  published  vortex-lift  concept  in  free air based on a leading- 
edge-suction  analogy is utilized,  and a method is presented  for  combining  it  with  the 
results of the  potential-flow  theory  in  ground  proximity. A comparison of the  theoretical 
and  experimental  lift  and  drag  for  delta  wings  with a wide  range of aspect  ratios is pre- 
sented at selected  angles of attack.  The  comparison  indicates  that  this  method  provides 
a reasonably good prediction of the  lift  and  drag  in  ground  proximity  for  aspect  ratios  less 
than 2.0 in  the  angle-of-attack  range  from 5' to 16'. 

INTRODUCTION 

In the  design of aircraft,  consideration of the  effect of ground  proximity on the  aero- 
dynamic  characteristics of the  aircraft is always  important. If not  considered,  ground 
effect  may  produce  large  unexpected  alterations  in  the  characteristics of the  aircraft 
during  landing  and  take-off.  Therefore,  methods  for  the  accurate  prediction of the  aero- 
dynamic  characteristics of low-aspect-ratio  delta  wings  in  ground  proximity are neces- 
sary  to  the  aircraft  designer.  The  present  study is concerned  with  delta-wing  planforms 
for which  the  proximity of the  ground  considerably  alters  the  aerodynamic  characteris- 
t ics of the  aircraft. (See ref. 1.) The  results are only  applicable  to  aircraft  having  delta 
wings  with  sharp  leading  edges, low aspect  ratios,  and  slender  planar  airfoil  sections. 
In this  study,  only  the  isolated  wing is considered. 

Classical  potential-flow  theory as implemented by lifting-line  and  horseshoe-vortex 
methods  (for  example, see ref. 2) has  proven  inadequate  to  predict  the lift and  drag of the 
low-aspect-ratio  sharp-leading-edge  delta-wing  planform  irrespective of the  presence of 
the  ground.  One  reason  for  this  inadequacy is the  failure of these  methods  to  treat  the 
chordwise  variation of lift. Lifting-surface  theory  implemented by vortex-lattice  methods 



(for  example, refs. 3 and 4) was  developed  in  order  to  include  the  chordwise lift distribu- 
tions;  however,  even  this  technique is inadequate  to treat the  present  planform.  The 
basic  reason  for  these  inadequacies is that  classical  potential-flow  theory  assumes  com- 
pletely  attached flow whereas,  in  reality,  the  flow  separates  from  the  leading  edges  and 
forms  spiral  vortices  which  result in a loss of leading-edge  suction  and  an  increase in 
lift. Reference 5 presents a new concept  for  the  calculation of the  vortex lift of planar 
sharp-leading-edge  delta  wings  based  on a leading-edge-suction  analogy.  This  concept 
provides a reasonably  accurate  method of predicting  the  total lift of planar  sharp- 
leading-edge delta wings  in  free air. 

The  present  study  employs a vortex-lattice  potential-flow-theory  lifting-  surface 
method  incorporating  an  image  technique  to  represent  the wing  in  ground  proximity; a 
method is also  introduced  for  combining  the  potential-flow  theory  with  the  free-air 
vortex-lift  concept.  The  resulting  theory  yields a reasonably good prediction of the  total 
lift  and  drag of planar  sharp-edge  delta  wings  in  ground  proximity.  The  method is not 

applicable  to  the  prediction of pitching  moment,  which is not considered  herein. 

SYMBOLS 

Longitudinal  data are presented  about  the  stability  axes. 

4 

b 

CA 

CA,der 

CD 

cL 

CN 

K 

aspect  ratio, b2/S 

total  wing  span,  feet  (meters) 

axial-force  coefficient,  positive  direction is toward  trailing  edge,  Axial  force 
qs 

axial-force  coefficient  derived  from  CN lat, C A , ~ ~ ~ ,  and  aCDi 
7 

aC2L.lat 
drag  coefficient, 

qs 
lift  coefficient, - Lift 

qs 
normal-force  coefficient,  positive  direction is away from  ground  plane, 

Normal  force 
qs 

a free-air  proportional  correction  to  vortex-lattice  axial-force  coefficient 

defined as CA,der 
CA,lat 

dynamic  pressure,  pounds/foot2  (newtons/meter2) 



S wing reference  area,  feet2  (meters21 

hE/4 normalized  height  parameter,  height of local  quarter-chord point of mean 
aerodynamic  chord  above  ground  divided  by  mean  aerodynamic  chord 

E 

e induced-drag  factor 

a! angle of attack,  degrees 

A leading-edge  sweep  angle,  degrees 

Subscripts: 

lat results of potential-flow  theory  vortex-lattice  computer  program 

potential-flow  theory  using CA,der 

t total 

METHOD OF ANALYSIS 

A  vortex-lattice  method of calculating  the  potential-flow  aerodynamic  characteris- 
t ics of delta  wings was programed  for  solution  on a high-speed  computer. In this method, 
the wing is subdivided  in  both  the  spanwise and chordwise  directions  into a number of ele- 
mental areas. In the present  study, six spanwise  and six chordwise  divisions  were  used 
on each half of the wing. The  local  chord was  divided  into  six  equal  increments  whereas 
the  spanwise  divisions  placed  trailing-vortex  legs at 0, 14, 28, 42, 56, 70, and  100 percent 
of the  semispan.  Each  elemental  area is represented by a horseshoe  vortex with the 
bound portion  lying  along  the  local  quarter-chord  line of the element.  The  boundary  con- 
dition  that  the flow be  tangential  to  the wing surface is then  satisfied  for  each  element at 
a point on the  lateral  midpoint of the  local  three-quarter-chord  line of the  element. 

The  proximity of the  ground is represented  in  the  computer  program by a mi r ro r  
image of the  vortex-lattice  system of the  wing across  the  ground  plane.  The  system  com- 
posed of the vortex  lattice  representing  the wing  and the  vortex  lattice  representing  the 
image wing is used  to  compute  the  aerodynamic  characteristics of the wing  in  ground 
proximity. 

In the vortex-lattice  program,  the  induced  velocity at a given  point is related  to  the 
circulation  strength of a given  horseshoe  vortex  through a geometric-influence  coeffi- 
cient  given by the  Biot-Savart  law. (See ref. 6,  pp.  126-  128.) In this program,  the 
geometric-influence  coefficients are computed, the  boundary  condition is applied,  and  the 
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circulation  strengths are calculated.  These  circulation  strengths are used to obtain the 
total velocities at the  midpoints of the  vortex-line  segments.  The  total  velocities are 
then  used  to  compute  the  normal  and axial forces  acting on the wing. The  computer 
program  provides  the  potential-flow-theory  normal  and axial forces  corresponding  to 
selected  conditions of ground  height  and  angle of attack  for  the  specified wing  planform. 
The  results are presented  in  this  paper as a function of a nondimensional  height param- 
eter, given as the  height of the  quarter-mean-aerodynamic-chord point  above the  ground 
divided by the  mean  aerodynamic  chord. 

The  computer  program  used  herein was designed  for  wings of arbitrary  planform. 
At the  present  time,  however,  this  program  has only been  verified  for  computing  CN lat, 

‘A, lat’ and for  delta-planform  wings.  Therefore,  the  complete  program is not 

described  in  detail  herein, and it is not available  for  release at this  time. However, a 
brief  description of the  equations  used  in  this  computer  program is included  in  the 
appendix. 

aCDi 
7 

2C2 
L,lat 

An axial-force  coefficient cA,lat can  be  calculated by using  the  vortex-lattice 
method as implemented  herein  since  the  total  velocities  used  to  compute  the  forces on 
the  vortex  lines  were  calculated at the  midpoint of each  vortex  segment  rather  than at the 
control  point  where  the  boundary  condition was applied.  However,  the  values  obtained 
are somewhat  inaccurate  because of the  discrete  nature of the  vortex-lattice  formulation 
of the  problem.  The first task is, therefore,  the  correction of the  axial-force  coefficient. 
The  method  used  herein  relies on the  fact  that  the  vortex-lattice  span  load  distribution  in 

f r e e  air can  be  used  to  compute  an  accurate  value of the  induced-drag  factor acDi 

aCL,lat 
2 -  

The  accuracy of this  calculation  has  been  checked by independent  methods. (See ref. 7.) 
Thus, a better  approximation of the  free-air  axial-force  coefficient,  valid  for  large  angles 
of attack  in  potential  flow, is obtained from  the  solution of 

-CA,der = cL,lat sin a - ac2 
L, lat 

J 
The  corrected  axial-force  coefficient  in  free air may  be  written  in  terms of the  vortex- 
lattice  axial-force  coefficient as 
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Equation (2) defines K, the  fractional  correction  to  the  axial-force  coefficient  in  free air. 
For a given wing planform, K is assumed  to  be a function of angle of attack  but  not a 
function of height  above  the  ground. 

The  lift  and  drag  coefficients are obtained by resolving  the  normal-  and  axial-force 
coefficients  in  directions  perpendicular  and  parallel  to  the free stream. If the  results of 
the  vortex-lattice  program  are  used  directly,  the  lift and drag  coefficients are 

The  effect of introducing K is to  replace  equations (3) by 

In this paper,  equations (3) are referred  to as the  vortex-lattice  theory, and equations (4) 
are   referred  to  as the  potential  theory. 

The  vortex-lift  concept  developed  in  reference  5  for  planar  sharp-leading-edge 
delta  wings is based on a leading-edge-suction  analogy.  For a planar  sharp-leading- 
edge  delta wing, the  leading-edge  suction is lost, and a leading-edge  spiral  vortex is 
formed. (See ref. 5.) In addition,  the  equilibrium  force  required  to  maintain  the  spiral 
vortex  adds  an  increment  to  the  normal  force which is identical  in  magnitude  to  the  lost 
leading-edge  suction. By using  the  vortex-lattice  method  to  account  for  the  effect of the 
ground on the  leading-edge  suction,  the  total  lift  coefficient  can  be  expressed as 

K] ‘A, latv 
cN,lat + cos A cos a! 

Since  the  leading  edge is sharp, no leading-edge  suction is developed  (that is, no force is 
developed  in  the axial direction);  therefore,  the  total  free-air  drag  coefficient is 

CD,t = CL,t tan a! 

Equations (5) are   referred  to   herein as the  present  theory. 

RESULTS AND DISCUSSION 

Several  features of the  analysis  should  be noted. First, the  existence of the  spiral 
vortices  emanating  from  the  leading  edge  implies a redistribution of vorticity  in  the  wing 
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and  wake. This  redistribution is not  accounted for with  respect  to  the  image  wing  below 
the  ground  plane,  even  though  the  results of reference 5 have  been  used  to  correct  for 
this  effect at the  real wing.  Secondly, the  choice of the  coordinate  system  used  in  the 
vortex-lattice  program  described  in  the  appendix  leads to a wake  which, at positive  angles 
of attack,  intersects  and  passes  through  the  ground  plane.  Finally,  since  the  present 
approach  uses  the  method of reference 5, which does not predict  the  distribution of forces  
over  the wing, this  approach  cannot  be  used  to  calculate  pitching  moment. 

In view of the  assumptions  used  in  developing  the  present  theory,  the  justification 
for its use  must  rest  primarily upon a comparison  with  experimental  data. One of the 
most  complete  experimental  studies of ground  effect  for  sharp-edged  delta  wings is that 
of reference 8, in  which a ser ies  of wings  with  leading-edge  sweep  angles of 75O, 70°, 600, 
and 50° (aspect  ratios of 1.072,  1.456,  2.309, and 3.356, respectively)  were  tested.  These 
wings were  tested by using  both  the  fixed-ground-board  and  image-model  test  methods at 
a free-stream  velocity of 114.8 ft/sec (35.0 m/sec)  mounted on a strut  support.  Certain 
unexplained  nonlinearities  existed at low angles of attack  in  the  data of reference 8; how- 
ever,  the  data  were  self-consistent.  Corresponding  with  the  assumptions of the  theory, 
the  wings were  isolated;  that is, there  was no fuselage or  tail.  The  experimental  data 
are  presented  in  terms of the  height  parameter  used  in  the  present  study. 

The  lift  and  drag  characteristics of the wings as functions of normalized  ground 
height are  presented  in  figure 1 for a! = 10' and  in  figure 2 for a! = 15'. The  drag  coef- 
ficients  presented  in  these  figures do not include  the  friction-drag component  which has 
been  removed by subtracting  the  minimum  drag  coefficients  from  the  data of reference 8. 
(The  values  subtracted  were 0.008,  0.010,  0.011, and 0.012 for wings  with  leading-edge 
sweeps of 75", 70°, 60°, and 50°, respectively.) 

An examination of figures 1 and 2 reveals  that when either  the  potential  theory o r  
the  present  theory is able  to  predict  the  free-air  lift  coefficients,  it  can  also  be  used  to 
predict  the  effect of ground  proximity  reasonably  well.  For  aspect  ratios  less  than 2.0, 
where  the  leading-edge  vortex is well  developed,  the  present  theory  (eqs. (5)) accurately 
predicts  the  lift. As the  aspect  ratio  increases  and  the  effects of the  leading-edge  vortex 
become  less  pronounced,  the  accuracy of the  potential-theory  lift  predictions  (eqs. (4)) 
becomes  progressively  better and  that of the  present-theory  predictions  becomes  worse. 
In general,  the  present  theory  yields a better  drag  prediction  than  the  potential  theory. 
These  effects  can  also  be  seen  in  figures 3 and 4 which summarize  the  lift and drag  char- 
acteristics as functions of aspect  ratio  for  selected  ground  heights. 

In order  to  examine  the  effects of angle of attack  over a larger  range,  the  data of 
reference 9 were  used.  Reference 9 presents  tabulated  lift and drag  data as functions of 
angle of attack and  ground  height  for a wing  with  an aspect  ratio of 1.616 (A = 68O). The 
wing was suspended on a wire  support  rig  over a fixed  ground  board  and  tested  at a 
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free-stream  velocity of 120 ft/sec (36.6 m/sec).  A  minimum  drag  coefficient of 0.009 
was  subtracted  from the measured  drag  data of reference  9  in  order  to  eliminate  friction 
drag  from  the  data. 

The  results of the  theoretical  calculations  for a wing  with  an  aspect  ratio of 1.616 
are compared  with  the  data of reference 9 over an angle-of-attack  range  from 1' to 
15.55O in figure 5. The comparison is further  summarized in figure 6.  Note  that  fig- 
u r e s  3  and 4 indicate  that  the  present  theory  should  yield a good prediction of the lift  and 
drag at this  aspect  ratio.  The  data  from  reference  9  indicate  that  the  same  result is 
obtained  except  at  an  angle of attack of 1'. It  should be noted,  however,  that  an  angle of 
attack of 1' probably  does  not  provide  sufficient  leading-edge  separation  for  the  complete 
formation of the  leading-edge  spiral-vortex  system.  Other  than this anomalous  point, 
the present  theory  gives a good prediction of the lift and drag  for each angle of attack 
throughout  the  ground-height  range.  The  predicted lift and  drag are presented  in  fig- 
u re  6 as a function of angle of attack  for  selected  ground  heights.  The  present  theory 
yields a reasonably good prediction of the  lift  and  drag  throughout  the  angle-of-attack 
range  from  some  angle of attack  between lo and 5.52O up to  an  angle of attack of 15.55O, 
the  highest angle of attack  for  which  experimental data were  available. (See  fig. 5.) 

CONCLUDING  REMARKS 

A  method of predicting the lift  and  drag of slender  planar  sharp-edge  delta  wings 
in  ground  proximity is described,  and  the  results are compared  with  experimental  data. 
The  method  utilizes a vortex-lattice  computer  program  incorporating  an  image  technique 
to  compute  the  potential-flow  normal-force  and  axial-force  characteristics of delta  wings 
in  ground  proximity.  A  correction  to  account  for  finite  vortex-lattice  spacing is made  to 
the free-air vortex-lattice  axial  force, and the  correction is assumed  applicable  to  the 
vortex-lattice axial force  in  ground  proximity.  A  recently  published  vortex-lift  concept 
in free air based  on a leading-edge-suction  analogy is utilized,  and a method is presented 
for  combining it with  the  results of the  potential-flow  theory  in  ground  proximity.  A  com- 
parison of the theoretical  and  experimental lift and  drag is presented at selected  angles 
of attack  for  delta  wings  with a wide  range of aspect  ratios. This method  provides a 
reasonably good prediction of the lift and  drag  in  ground  proximity  for  aspect  ratios less 
than 2.0 in the angle-of-attack  range  from  approximately 5O to 16O. 

Langley  Research  Center, 
National  Aeronautics  and  Space  Administration, 

Langley  Station,  Hampton,  Va.,  July 5, 1968, 
126-13-01-50-23. 
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APPENDIX 

VORTEX- LATTICE METHOD 

The  vortex-lattice  method  used  in  the  present  analysis  can best be described by 
giving  the basic equations  used  in  the  computer  program. 

Symbols 

The  following is a list of those  symbols  used  in  the  appendix  which  differ  from  those 
used  in  the  main  text. Any convenient  system of measure  can  be  used.  The  sign  conven- 
tions  used  in  the  present  study  may  differ  somewhat  from  the  standard  sign  conventions. 

matrix  defined by equation (A6) 

axial force,  positive  toward  trailing  edge 

normal  force,  positive away from  ground 

influence  coefficient  in X,Y, Z coordinate  system 

influence  coefficient  in X*,Y*, Z *  coordinate  system 

height of apex of wing  above  ground 

length of vortex-line  segment  on  wing 

general  point  in  space 

horseshoe-vortex  semispan 

free-stream  velocity, U, = 1 

perturbation-velocity  components  in  positive X-, Y-,  and Z-directions 

resultant  induced  velocity  with  components u, v,  and w 

orthogonal  right-handed  primary  Cartesian  coordinate  system  with  origin at 
wing  apex  (see  fig. 7); positive  X-direction is away from  trailing  edge,  posi- 
tive  Y-direction is toward  right  wing  tip,  and  positive  Z-direction is toward 
ground 
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orthogonal  right-handed  primary  Cartesian  coordinate  system  associated  with 
image  wing (see fig.  7(d));  positive X* is away from  trailing  edge,  posi- 
tive Y* is parallel  to  positive Y, and  positive Z * is away from  ground 

orthogonal  right-handed  secondary  Cartesian  coordinate  system  with  origin 
at lateral  midpoint of local  quarter  chord of element  (see  fig. 7(b)) 

orthogonal  right-handed  secondary  Cartesian  coordinate  system  associated 
with  image  wing 

circulation  strength 

angle  between  normal  to  ground  plane  and Z-ax i s  (note  that @ = a) 

angle  between bound vortex  and  y-axis,  positive  direction is counterclockwise 
from  positive y-axis 

Subscripts: 

a particular  point (Pa) 

BC boundary  condition 

b  particular point (Pb) 

C chordwise  segment 

I image  wing 

1  left wing panel 

R real  or actual wing 

r right wing  panel 

S spanwise  segment 

u,v,w components of influence  coefficient  in  x-, y-, and  z-directions 



APPENDIX 

Equations  Used  In  Vortkx-Lattice  Computer  Program 

Application of the  vortex-lattice  method  to a delta-wing  planform is shown in  fig- 
u re  ?. A  simplified  subdivision of a delta wing  into  elemental parts is shown in fig- 
u re  ?(a).  Figure 7(b) shows a horseshoe  vortex  representing a typical  element.  The 
orthogonal  primary  coordinate  system  used  for  the wing is shown  in  figure  ?(c).  The 
height of the wing  apex  above  the  ground is h, and  the  angle  between  h  and  the Z-axis 
is @. The  angle of attack Q! is defined as the  angle  between  the  free-stream  velocity 
and  the  X-axis. To simplify  the  analysis,  the  assumption is made  that C#I = a!. Thus,  in 
the  present  investigation,  the  dynamic  situation of an  aircraft  landing  maneuver  in  which 
@ and a! a r e  independent  functions of time is not represented.  The  perturbation  veloc- 
ities  in  the X-, Y-, and  Z-directions  are shown  in  figure  7(c) as u, v, and w, respec- 
tively.  The  orthogonal  secondary  coordinate  system  associated  with  the  horseshoe  vor- 
tex,  representing a typical  element of the wing, is shown in figure ?(b). The  angle  between 
the bound vortex and the  y-axis is defined as I). The  semispan of the  horseshoe  vortex 
is s. Note that a secondary  coordinate  system is associated  with  each  horseshoe  vortex 
of the  lattice. 

The  basic  relation  betweerl  the  induced  velocities V and  the  horseshoe-vortex  cir- 
culation  strengths I? is, in  matrix  notation, 

where [H] is a geometric-influence-coefficient  matrix. In  the  computer  program,  this 
vector  equation is replaced by three  scalar  equations  for u,  v,  and w. 

The  first  task is to  compute  the  influence-coefficient  matrix. By using a method 
similar  to  reference 6, pages 157-160,  the  influence of a single  horseshoe of unit  circula- 
tion  at a point  P(x,y,z)  in  the  secondary  coordinate  system is 

y cos. @ + x  sin + - 
iz2 + (y - s)  + (x - s tan 2 
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Z -x + s tan + 
4 n p  + (y - s) - s) + (x - s tan +) 2 

+ -x + s tan + 
\122 + (y - s)2 + (x - s tan +) 

+ -x - s tan + 
\Iz2 + (y + s) + (x + s tan +) 2 

Equations (A2) are based  on  the  assumption that the trailing  vortex  sheet lies in the plane 
of the  wing  and  extends  to  infinity.  Because  this  assumption is made,  the  physical  situa- 
tion  in  which  the  trailing  vortex  sheet  essentially  follows  the  free-stream  direction is not 
represented.  Nonetheless,  this  assumption  was  made  in  order  to  simplify  the  equations. 

From  considerations of symmetry,  for each horseshoe  vortex  on  the left half of the 
real wing, there exists a corresponding  horseshoe  vortex  on  the  right half of the real wing 
as well as on the  left  and  right  halves of the  image wing, all of which  have  equal  circula- 
tion  strengths.  Therefore,  equation (Al) can be restricted  to  consideration of the  left half 
of the real wing  provided  each  element of the H matrix is the  sum of four  successive 
applications of equations (A2) with  sets of the  secondary  coordinates (x,y,z) appropriate  to 
each of the  four  wing  panels  being  used. 

Let (xb,Yb,o) represent  the  coordinate of a point pb on  the left half of the real 
wing at which  induced  velocities are to be computed.  Let (Xa,Ya,O) be the  origin of the 
secondary  coordinate  system of a horseshoe  vortex  on  the left half of the real wing. The 
corresponding  element of the  influence-coefficient  matrix [H] may be written as 

H = H ~ , R  + Hr,R + H1,I + H = HR + HI 
r,I (A31 
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The U, V, and W ComPonents of H1 R are found  directly  from  equations (A2) by 
letting  y = y1 and  using 

x = xb - xa 

Since H,,R is symmetrically  related  to  the  influence of the left real horseshoe  vortex 
on a point  (xb,-Yb,O)j let yr = -Yb - Ya and  reverse  the  sign of the  component of V in 
the  Y-direction.  Then,  the  components of  HR = H1,R + Hr,R are 

I.lu,~ = HuP,Y1,Z) + Hu(x,Y~z)  (A44 

To  determine  the  image-wing  influence  terms,  the X,Y,Z coordinate  system is 
translated  downward  through  the  ground  plane  and  rotated  through an angle of 2@  in  the 
XZ-plane. (See fig. 7(d).) The  assumption  that  the  wake of the real wing lies in  the 
XY-plane results  in a wake  which, at positive  angles of attack,  intercepts  the  ground  and 
passes  into  the  image  region below.  Similarly,  the  image  wake  intercepts  the  ground  and 
passes  into  the real region  above.  Although it is hoped that  such  behavior  will  not  sig- 
nificantly  affect  the  present  results,  large  errors  would  probably  result if the  present 
technique  were  used  to  obtain  the downwash at a rear tail. The  technique  used  to  form 
the  image  in  this  investigation  depends upon the  assumption  that  the wing is planar.  The 
image  system  would be incorrect if the  wing  had  such  nonplanar  characteristics as cam- 
ber, twist, dihedral, or a deflected  flap. 

With respect  to  the X*,Y*,Z * coordinate  system,  the  coordinates of the  point 
(xb,Yb,o)  become (see fig.  7(d)) 

xb* = -2h sin @ + xb cos  2$~ 

Zb = -2h cos @ - xb sin 241 * 

Thus,  to  obtain  the  influence of the left half of the  image  wing on the left half of the  real 
wing ( H1 9 I ) ,use 
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x = -2h  Sin @ + xb COS 2 4  - xa * 

To  obtain  the  influence of the  right  half' of the  image  wing  on  the left half of the real wing, 
the  y-coordinate is altered  to 

yr = -Yb - Ya * 

and  the  sign of the  v  component is reversed. 

Substitution of these  coordinates  into  equations (A4) yields the components H:, 
$, and G. These  image-influence  components are expressed  in the directions of the 
rotated axis system.  The  following  equations are used  to  resolve  the  image  influence 
into  the X-, Y-, and  Z-directions  and  to  account  for the fact  that  the  circulation  strengths 
of the  image  vortices are opposite  in  sense  to  those on the real wing: 

where 

and the components of the HI matrix are Hu,I, %,I, and Hw,I; the  components of the 
H* matrix are H:, Hv, and Hw; and  the B matrix is defined as follows: * * 

0 

B =  

Since  only  planar  wings are considered  in t h e  present  study,  the  boundary  condition 
is 

wBC - U, sin LY = 0 (-47) 

or for a free-stream  velocity of unity 

wBC = sin Q! 

The  circulation  strengths are then  computed  from  the  equation 
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where  each  element of the H matrix is the  total  influence at a given  boundary  point 
caused  by a given set of four  symmetrically  placed  vortices on the real and  image  wings. 

Since  the  circulation  strengths are known, computation of the  forces  acting on the 
wing is now possible.  Let a segment  be  defined as that  portion of a line of vorticity on 
the wing  which has a constant  circulation  strength.  The  present  analysis  computes  the 
induced  velocity at the  midpoint of each  segment  from  the  equation 

where  the H matrix is now the  influence of the  set of horseshoe  vortices on the  set of 
points  composed of the  midpoints of the  segments. If the  induced  velocities are  expressed 
in   t e rms  of u, v,  and w, the  forces on the wing  can  be  computed by forming  the  vec- 
tor  cross  product of the  circulation  strengths of the  segments  and  the  induced  velocities 
at the  midpoints of the  segments.  For a spanwise  segment,  the  forces  are 

FA,s = 2rs(ws - sin @)(as) (A 1 la) 

(A 1 lb) 

where  the  subscript s denotes a spanwise  segment.  For a chordwise  segment,  the 
forces   are  

FA,c = (A12a) 

(A12b) 

where  the  subscript  c  denotes a chordwise  segment,  IC is the  segment  length  con- 
tained  within  the  planform,  and rc is the  net  circulation  strength  resulting  from  the 
individual  circulations of each  trailing-horseshoe-vortex  leg  forming that segment. 

The  total  normal  and  axial  forces  acting on the wing a r e  obtained by summing  the 
normal  and  axial  forces  acting on all  segments.  The  values of cN,zat and  cA,lat  are 

then  computed from  the  total  normal and  axial  forces.  The  method of computing 
aCDi 

aC2L,lat 
in f ree  air is given  in  reference 7. 
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(a) A = 750: R = 1.072. 

Figure 1.- Comparison of l i f t   and  drag  coeff icients  determined by dif ferent  theor ies  wi th  the  exper imental  data of reference 8 a t   an  
angle of attack of loo. 
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(b) A = 700; R = 1.456. 

Figure 1.- Continued. 
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( c )  A = @lo; R = 2.309. 

Figure 1.- Continued. 
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(d) A = 50"; R = 3.356. 

Figure 1.- Concluded. 
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Figure 2.- 
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(b) A = 700; R = 1.456. 

Figure 2.- Continued. 
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( c )  A = 60°; R = 2.309. 

Figure 2.- Continued. 
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(dl A = 50”; Al = 3.356. 

Figure 2.- Concluded. 
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F igu re  3.- Effect of aspect  rat io  on  theoretical  predict ions of l i f t   and  drag  coeff ic ients  at  two heights above the   g round  and  compar ison  
with  exper imental  data of reference 8. a = 18. 
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F y u r e  4.- Effect of aspect ratio  on  theoretical  predictions of lift and drag coefficients  at two heights above the ground  and comparison 
with  experimental data  of reference 8. a = 15O. 
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F igu re  5.- 

(a) a = lo. Note the  enlarged CL a n d  Cg scales. 

Comparison of l i f t   and  drag  coeff icients  determined by dif ferent  theor ies  wi th  the  exper imental  data  of  reference 9. 
h = 68'; R = 1.616. 
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(b) a = 5.52'. 

Figure 5.- Continued. 
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(c) a = 10.53O. 

Figure 5.- Continued. 
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(d) a = 15.550. 

Figure 5.- Concluded. 
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(a) Simplified  vortex  layout  on  left  wing  panel. (b) Typical  horseshoe-vortex  layout.  The  positive  z-direction is   in to   the paper. 

Figure 7.- Application of the  vortex-lattice  method to a delta-wing  planform. 
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(cl Geometry  associated with  real   wing. 

Figure 7.- Continued. 
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(dl  Coordinate  systems  associated with  real  and image  wings.  Note  that Pb is  shown  with xb positive  for  clarity. 

Figure 7.- Concluded. 
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